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 An interactive software environment (CARAT#) that allows rapid prototyping of en 
route air traffic management algorithms is described. This software employs the NASA-
FACET software as its computational engine, and allows the user to rapidly develop and 
evaluate en route air traffic management algorithms. Two versions of CARAT# have been 
developed. The first is built upon a commercial software platform, while the second version 
employs a freely available interactive, scriptable environment as its foundation. In addition 
to permitting direct access to the FACET capabilities, these interactive environments enable 
the users to readily build additional functionality into FACET and allow the rapid 
integration with several commercial software packages.  The use of CARAT# software is 
illustrated through the formulation of a few research problems.  

I. Introduction 
uture air traffic management (ATM) systems are expected to contain several algorithms and software tools for 
decision-support and airspace automation1-3. Continuing research at NASA and other ATM technology centers 

nationwide has resulted in the development of multiple software tools for investigating future air traffic management 
system concepts. Specifically, the FACET (Future ATM Concepts Evaluation Tool, Reference 4) software was 
developed at NASA Ames Research Center to provide research capabilities for the en route portion of the air 
transportation system. Due to the extensive capabilities offered by FACET, it is expected that this software will 
continue to play a central role in a variety of air traffic management research initiatives in the future. 

While FACET software provides very powerful capabilities, it is often necessary to extend its capabilities 
during the course of individual research projects. Due to the fact that the FACET is written in C, with a JAVA GUI, 
modifications require a significant computer programming investment. While such investments can be justified 
when multi-year investigations are undertaken, it is difficult to find adequate resources to do this on smaller research 
efforts.  In these cases, it is desirable to have a rapid prototyping software environment in which ideas can be rapidly 
explored without being bogged-down with coding issues such as memory management, precision and variable 
typing.  

Ideally, it should be possible to code algorithms in an interactive scripting environment, allowing them to 
be executed without the traditional compile-link cycle. This process will allow algorithms to be developed by 
analysts with modest programming skills.  If these algorithms are found to be useful, they can subsequently be 
coded into languages like C or Java by professional programmers and integrated with the FACET software. An 
additional benefit of employing an interactive scripting environment is that it permits researchers to share software 
packages without worrying about inter-operability issues. This fosters collaborative algorithm development without 
demanding extensive programming expertise from the analysts.  
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Such an approach has proved highly successful in automatic control and signal processing disciplines, 
where the availability of scriptable software environments such as MATLAB®5 and MATRXX®6 have resulted in 
the rapid acceptance of advanced system design techniques by the industry. It has been observed by many computer 
scientists that large, complex applications universally benefit from being scriptable. 

The objective of the present research is to develop a scriptable, interactive environment that provides 
simpler access to the FACET functionality. This software package is termed as CARAT# (pronounced “Carat-
Sharp”, Configurable Airspace Research and Analysis Tool – Scriptable). CARAT# allows the user to access 
FACET functionality through a set of scripts, executable interactively, without resorting to the traditional compiling 
and linking operations. As in the past experience with scriptable environments, such capability can provide 
immediate benefits by allowing a large number of analysts to employ FACET for research purposes. Moreover, a 
wide array of commercial software packages can readily be integrated with FACET using the scripting environment 
to conduct a wide range of research projects. Powerful graphical tools and visualization methodologies available 
commercially can be used to convey the results with only a modest programming investment.   

Two popular scripting environments5, 7, 8 were used for CARAT# development. Scientists and engineers 
have long recognized the power of command line interfaces for exploring and manipulating algorithms and data sets. 
Specifically,  

• scripting reduces the amount of code required to perform tasks, 

•  scripting allows for rapid integration with other software packages,  

• the interpreter helps with rapid code development by allowing the user to run code without compilation. 

MATLAB5 interactive scripting environment has been popular in the automatic control and signal 
processing communities for several years. Another scripting environment that is rapidly gaining acceptance is the 
Python© 7, and with the advent of the java language, the Jython© 8  scripting environment.  

 The Section II will discuss the overall architecture of the CARAT# software. Section III will describe a set 
of research problems that illustrate the use of CARAT# in ATM research. These include trajectory optimization 
using genetic algorithms, formation flying using Fuzzy logic, Monte-Carlo simulation, data fusion using Kalman 
filter, advanced data visualization and the investigation of a conflict resolution algorithm. The first two examples 
use commercial toolboxes, the other three employ MATLAB numerical algorithms and graphics capabilities. The 
conflict resolution example illustrates the versatility of the CARAT# software environment by implementing the 
modified potential field method in Java, Jython and MATLAB. Conclusions are given in Section IV. 

II. CARAT# Software Architecture 
The Configurable Airspace Research and Analysis Tool-Scriptable (CARAT#) builds on the Future ATM 

Concepts Evaluation Tool (FACET) developed at NASA Ames Research Center, and the CARAT software 
developed under a recent research project with NASA9. CARAT# software allows the user to access the FACET 
functionality through scriptable interfaces built in MATLAB and Jython.  Moreover, the CARAT# architecture is 
flexible enough to enable access to FACET functions over the internet using web services. 

Figure 1 illustrates the overall architecture of the CARAT# software. CARAT# is designed to serve as an 
application programming interface (API) to FACET, which provides Java classes that can be invoked by the user 
through MATLAB, Jython or Java. Methods in these classes can be used as primitives for building more complex 
functions. A total of 8 Java classes with over 200 methods were developed during the present research. 

The CARAT# software provides access to the FACET functionality through a collection of Java methods 
that interface primarily with the FACET GUI. CARAT# uses the FACET Java functions to develop a set of 
primitives which are provided to the user. This architecture provides multiple approaches for using the CARAT# 
software. Firstly, the Java interface classes can directly be used as components of a standard Java program. 
Secondly, it can be used in the MATLAB environment by exploiting MATLAB’s native Java connectivity. Thirdly, 
CARAT# classes can be employed in the Jython environment to develop interactive scripts. In the architecture given 
in Figure 1, the user can integrate programs written in C/C++, Fortran or Ada with the CARAT# software through 
the higher level language interface provided in MATLAB. Moreover, by providing appropriate web services, 
CARAT# functionality can be provided over the internet to remote users.  Such capabilities will allow for 
collaborative computing involving multiple researchers. 
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Figure 1. Functional Components of Configurable Airspace Research and Analysis Tool - 
Scriptable (CARAT#) 

The Java classes making up the CARAT# are organized to provide access to the FACET GUI, air traffic 
simulation controls, states and control variables of aircraft in the airspace, Center/Sector/airport related data, and 
navigation and atmosphere data. A graphical user interface assists the user in employing the correct syntax for each 
of the methods during their use.  The next section will illustrate how the CARAT# Java classes and methods can be 
used to formulate and solve a class of research problems. 

III. Formulating Research Problems in the CARAT# Environment 
As motivated in the previous section, the main objective in developing the CARAT# software is to enable 

easier development of en route ATM algorithms by providing convenient access to the FACET functionality. 
CARAT# can be used by the researchers to formulate and evaluate algorithms without extensive programming 
effort.  This section will demonstrate the usefulness of the software by formulating a few research problems. While 
these problems have been considerably simplified for the sake of illustration, they are representative of the types of 
investigations often undertaken by researchers in the ATM community. The objective is to illustrate the versatility of 
the software package.  

Aircraft Trajectory Optimization Using Genetic Search Techniques 

There is currently a strong interest in system-wide optimization of aircraft trajectories to take advantage of 
ambient winds, while enforcing system constraints10. The research problem discussed in this section illustrates use 
of the CARAT# software to formulate trajectory optimization problems of interest in en route air traffic 
management.  

The present trajectory optimization problem seeks to determine the fuel-optimal trajectory of an aircraft 
flying to a destination, while avoiding a restricted airspace. Since the airspace restriction introduces a state 
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constraint for the optimization problem, this represents a fairly complex trajectory optimization task.  As the first 
step in this process, the trajectory is parameterized as a series of straight line segments passing through latitude-
longitude waypoints, with longitude being chosen as the independent variable. The initial and final latitude-
longitude pairs are held constant during the optimization process. The optimization algorithm determines the 
latitudes of the intermediate waypoints to minimize the fuel consumption while satisfying the path constraint.  

Although any one of the several optimization algorithms11, 12 could have been used for this problem, the 
Genetic Search Toolbox13 for MATLAB is employed as the optimizer. The Genetic Search Toolbox provides 
functions for implementing classical genetic algorithms14, evolutionary programming15, or the more modern genetic 
programming algorithms16 in the MATLAB environment. These methods are useful for solving optimization 
problems that may involve complex constraints, multiple objective functions, discontinuities and nonconvex 
performance indices. Unlike the conventional optimization algorithms, genetic search methods do not require good 
initial guesses. However, depending on the parameterization of the problem, they may be good only for generating 
near-optimum results. Conventional methods can subsequently be used to refine the results.  

In the genetic search process, each candidate solution is coded as a chromosome that can be manipulated 
using biologically inspired genetic operations such as mutation and crossover. Resulting offspring are then decoded 
to determine their fitness or the performance index. For the present problem, each candidate trajectory is coded as a 
character string, specifying the flight plan. Candidate trajectories are assumed to consist of eight latitude increments 
specified at each of the longitude points. For instance, a candidate chromosome may be of the form: 
 
Example_Chromosome = ‘A B G H U T I N’ 
 
Each character in this string can be mapped as latitude increments in a nominal flight plan consisting of a line 
joining the initial and final latitude-longitude pairs. The characters in the string are translated into latitude locations 
as follows: 
 
Latitude_increment = (char – ‘K’)/10 
Flight_Plan_Latitude = Nominal Flight_Plan_Latitude + Latitude_increment 
 
The latitude increments at the 8 way-points for the example chromosome can thus be decoded as: 
 
(‘A’–‘K’)/10  (‘B’–‘K’)/10  (‘G’–‘K’)/10  (‘H’-‘K’)/10  (‘U’–‘K’)/10  (‘T’–‘K’)/10   (‘I’–‘K’)/10  (‘N’-‘K’)/10 
 
= [-1 -0.9 -0.4 -0.3 1 0.9 -0.2 0.3] 
 
It should be noted that the subtraction of the characters is based on their ASCII numeric values. The latitude 
increment is then added to the nominal flight plan latitudes to obtain the new flight plan.  

An initial population consisting of 100 members, each an 8-character string composed of random 
combinations of characters ranging from ‘A’ to ‘U’ was used for the genetic search. These characters generate 
latitude increments in the range of -1deg to 1deg with a resolution of 0.1deg. The restricted airspace in the present 
example consists of latitude locations that are within 0.5 degrees on either side of the nominal flight plan, between 
the fourth and fifth way-points. This can be translated into an equivalent constraint on the choice of characters that 
can be employed as the fourth and fifth characters in the chromosomes.  
 Figure 2 shows a computational flowchart of the trajectory optimization process using the genetic search 
technique. In order to demonstrate the power of the genetic search methodology in finding solutions using poor 
initial guesses, every member of the initial population has been deliberately chosen to violate the constraint. A Fixed 
Length Crossover operation is conducted on chromosomes that are selected from the initial population based on 
their fitness values. Chromosomes that violate the restricted region constraint are assigned a very high fitness value 
to decrease their chances of participating in the crossover operation. 

The crossover operation selects a randomly generated point along the string and exchanges the portion of 
the string to the right of the chosen point. This process creates two new chromosomes. A selection ratio of 5 is 
chosen for the crossover operation, which implies that a chromosome with the best fitness value is 5 times more 
likely to chosen for crossover than the chromosome with the poorer fitness value. Each crossover operation 
corresponds to one generation and the process has to be repeated for a sufficiently large number of generations to 
find the optimal solution.  
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Figure 2. Computational Flowchart of the Trajectory Optimization Algorithm Using 
Genetic Search 

 
The genetic search based trajectory optimization algorithm is used to find a hypothetical optimal flight plan 

between Seattle and Minneapolis.  The result of the optimization run at the end of 1000 generations is shown in 
Figure 3. This figure shows the best member in the initial population, nominal flight plan, the restricted airspace and 
the best member in the final population. The left end point of the nominal flight plan represents Seattle and the right 
end point represents Minneapolis. It can be seen that the best member in the initial population violates the constraint 
as it passes through the restricted region. The optimal solution obtained at the end of 1000 generations closely 
matches the nominal flight plan near the departure and arrival airports. However, it takes a detour from the nominal 
flight plan in the middle to avoid the restricted region by grazing through the boundary of the restricted region. 

The evolution of the fitness of the best chromosome in the population with respect to the number of 
generations is shown in Figure 4. The initial fitness value is very high because all members of the initial population 
have been chosen to violate the constraint. The fitness value decreases with increasing number of generations. It 
should be noted that a large number of crossover operations do not produce better offspring thereby causing the 
fitness value to remain unaltered during those generations.  

Monte-Carlo Simulation Evaluation of the Impact of Departure Delays on Arrival Traffic Flow 

Monte Carlo simulations are used to investigate statistical relationships between variables of interest in 
complex dynamical systems. Monte Carlo simulations can provide valuable insights into the dynamics of the 
national airspace system, thereby helping to formulate sound air traffic management policy. The objective of the 
present example is to demonstrate the usefulness of the CARAT# software for formulating a Monte-Carlo 
simulation study.   

The formulation of the Monte-Carlo simulation in this section seeks to investigate the effects of departure 
delays at 15 east coast airports: BOS, ALB, JFK, EWN, LGA, IAD, PHI, PIT, BWI, BDL, DCA, RDU, CHS, ATL, 
MIA on arrival traffic statistics at the Chicago O’Hare International airport (ORD) over a 24 hour period. The 
departure delay is modeled as a Poisson random variable with a mean of 3 hours.  
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Figure 3. Optimal Trajectory, Together with the Best Member in the Initial Population 
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Figure 4. Evolution of the Fitness in the Genetic Trajectory Optimization Process  
Upon detection of a departure from any of the 15 airports, a Poisson-distributed random number is generated 

and the aircraft is delayed by that amount. This process is carried out for traffic evolving over a 24-hour period.  At 



Presented at the AIAA Guidance, Navigation and Control Conference, August 15 -18, 2005, San Francisco, 
California. 

 
Published by the American Institute of Aeronautics and Astronautics with Permission 

 

7

ORD, the arrival traffic is counted in bins of 2-hour duration, centered at 7 AM, 9 AM, etc. Thus, the 7 AM data 
represents arrival traffic between 6 AM and 8 AM, 9 AM data represents traffic between 8 AM and 10 AM and so 
on. At the end of Monte-Carlo simulation runs, the 2-hour aggregate air traffic is averaged. 

A computational flowchart of the Monte-Carlo simulation is given in Figure 5. Poisson distributed random 
numbers were generated using MATLAB random number generator, and CARAT# methods were used to delay 
aircraft in FACET and to retrieve arrival information. Simulation controls are also implemented using CARAT# 
methods. 
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Figure 5. Computational Flowchart of the Monte-Carlo Simulation using CARAT# 
A sample set of results from the Monte-Carlo simulation study are given in Figure 6. The data used in this plot was 
derived using 125, 24-hour air traffic simulations.  
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Figure 6. Impact of Departure Delays on Arrival Traffic Flow at ORD, Monte Carlo 
Simulation Results using 125, 24-hour Traffic Simulations 
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Figure 6 shows the nominal traffic pattern as well as the delayed traffic pattern. Delayed traffic data from each of 
the 125 simulations are averaged and presented in this figure. Although the variances were also computed, they are 
not given here. 

It can be observed that a mean delay of 3 hours for aircraft originating from the major east coast airports bound 
to ORD can significantly reduce the early morning traffic at ORD.  Moreover, the peak traffic originally centered on 
5 AM is now seen at 1AM. The traffic flows into ORD with departure delays are significantly different from the 
nominal traffic patterns. Although the present example is rather simplified, it demonstrates how the CARAT# 
methods can be used to derive useful results. The CARAT# architecture is flexible enough to allow the set up of a 
wide variety of Monte-Carlo simulations. 

A Fuzzy-Logic Controller for Formation Flying 

One of the proposals advanced for reducing the complexity of the air traffic management problem in the 
future is to have the aircraft headed in a particular direction fly in formations at the FAA minimum separation 
standards. Such operations may make sense to cargo operators and airlines employing hub-spoke type of operations.  
Moreover, this formalism readily allows the use of robotic aircraft in the controlled airspace. The example discussed 
in this section illustrates the simulation assessment of a formation flight control system in FACET using the 
CARAT# software running in MATLAB. As in the previous example, the objective of the present formulation is to 
illustrate how the FACET functionality may be combined with other software packages using the CARAT# 
environment. Towards this end, the MATLAB Fuzzy Logic Toolbox17 is used to derive a fuzzy-logic formation 
controller. 

Automatic formation flight control systems have been of interest in recent literature, motivated primarily by 
the use of unmanned air vehicles (UAVs) in military operations. The controller development in this paper employs a 
compact set of fuzzy logic rules to form and maintain formations.  

The present example consists of three aircraft departing from San Francisco (SFO), San Jose (SJC) and 
Oakland (OAK), all bound for the Washington Dulles International airport (IAD).  The objective of the controller is 
to place the three aircraft in an equilateral triangle geometry with a 5000 feet separation between each of them. The 
aircraft departing from SFO (UAL208) is treated as the leader while the aircraft departing from OAK(UAL209) and 
SJC(UAL210) are treated as followers. The leader aircraft-UAL208 follows a flight plan available in FACET and 
the other two aircraft follow the commands generated by a fuzzy logic controller to form and maintain the desired 
formation. The control commands to the follower aircraft are in the form of airspeed and heading angle settings.  

The controllers compute the relative distance between the leader and the followers and transform these 
distances into the local horizontal plane. The errors between desired and actual values of the relative distances are 
then used by the fuzzy-logic controller to generate control settings. Using a fuzzifier, a fuzzy inference system, and a 
defuzzifier, the controllers generate corrections in the longitudinal and lateral directions. These are then transformed 
into airspeed and heading angle settings for each aircraft.  Figure 7 shows a schematic of the closed-loop simulation 
of the fuzzy formation controller. 
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Figure 7.  Schematic of the Formation Flying Controller Implementation 
 
The fuzzifier and the defuzzifier employ two fuzzy sets {‘SMALL’, ‘BIG’}, to classify the errors and the 
corrections respectively.  Trapezoidal membership functions are used to characterize the membership values in these 



Presented at the AIAA Guidance, Navigation and Control Conference, August 15 -18, 2005, San Francisco, 
California. 

 
Published by the American Institute of Aeronautics and Astronautics with Permission 

 

9

two sets. Figure 8 and Figure 9 illustrate the membership functions for the error. The membership functions are 
chosen to be the same for both longitudinal and lateral errors. 
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Figure 8. Membership for the Error Set ‘SMALL’ 
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Figure 9. Membership Function for the Error Set ‘BIG’ 
The fuzzy inference system uses the fuzzified tracking errors, together with a set of rules to determine the control 
settings. The rules used in the present example are:  
 

IF MAGNITUDE OF ERROR ALONG Z DIRECTION IS SMALL THEN MAGNITUDE OF VELOCITY 
CORRECTION IS SMALL 

 
IF MAGNITUDE OF ERROR ALONG Z DIRECTION IS BIG THEN MAGNITUDE OF VELOCITY 

CORRECTION IS BIG 
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IF MAGNITUDE OF ERROR ALONG Y DIRECTION IS SMALL THEN MAGNITUDE OF HEADING ANGLE 
CORRECTION IS SMALL 

 
IF MAGNITUDE OF ERROR ALONG Y DIRECTION IS BIG THEN MAGNITUDE OF HEADING ANGLE 

CORRECTION IS BIG 
  
Note that rather naïve set of rules are used in the present example. The Z direction is treated as the longitudinal 
direction and the Y direction is the lateral direction.  

The membership functions used for the control variables are given in Figure 10 and Figure 11. The 
defuzzification process is based on the centeroid of the area under the membership functions. The sign of the actual 
control is determined by the sign of the error along the corresponding direction. The airspeed and heading angle 
corrections generated by the fuzzy-logic controller for different values of the error inputs along the longitudinal and 
lateral directions are illustrated in Figures Figure 12 and Figure 13. 

The Fuzzy Logic Toolbox generates a MATLAB function for implementing the fuzzy logic controller. This 
function, together with a MATLAB script employing CARAT# methods are used to generate closed-loop simulation 
results.  

A sample simulation result is presented in Figure 14. This figure shows the aircraft trajectories in a leader 
relative coordinate system. In this frame, the leader aircraft position is always zero. The follower aircraft in the 
formation, UAL209 and UAL210 takeoff from their respect airports and reach the formation after about 30 minutes. 
From that point on, they fly in very tight formation to their destination.  

The fuzzy logic formation control system presented in this section demonstrated how software packages 
can be conveniently integrated with FACET functionality in the CARAT# environment. The MATLAB-CARAT# 
script implementing the closed-loop simulation is very compact and required very little programming expertise to 
assemble. 

 

 

Figure 10. Membership Functions for Airspeed Correction 
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Figure 11. Membership Functions for Heading Angle Correction 
 
 
 
 
 

 

 

Figure 12. Airspeed Corrections Generated by the Fuzzy Logic Formation Controller for 
Different Values of Error 
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Figure 13. Heading Angle Corrections Generated by the Fuzzy Logic Formation Controller 
for Different Values of Error 
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Figure 14. Formation Flying Trajectory in the Leader-Relative Coordinate System 
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Navigation Data Fusion Using a Kalman Filter 

Some of the navigational sensors available onboard aircraft are the inertial navigation system(INS), global 
positioning system(GPS), VHF omni directional range and distance measuring equipment18, 19 (VOR-DME). 
Additionally, locations of aircraft flying in controlled airspace are continuously being monitored by the FAA using 
tracking radars. These radars determine the two horizontal components of the aircraft position vector, the altitude 
being provided by the transponder onboard the aircraft. Availability of the Automatic Dependent Surveillance – 
Broadcast (ADSB) system in the future will enable individual aircraft position data to be made available to all the 
aircraft. Moreover, future ATM environments may provide additional navigational data to the aircraft.  
 In this data-rich environment, a central requirement will be the generation of aircraft state estimates that are 
consistent with all the measurements. It is essential that these state estimates be constructed in a logical manner, 
because several of the future air traffic management subsystems may use the data for automating aircraft separation 
and flow control.  
 This example demonstrates how the numerical linear algebraic capabilities of MATLAB can be used in 
conjunction with FACET to formulate a data fusion system using the well-known Kalman filtering algorithm20, 21. 
The variables of interest in aircraft navigation are the latitude, longitude, altitude, airspeed, flight-path angle and the 
heading angle. The present study employs INS, GPS and tracking radar data in the Kalman filter. In order to 
maintain realism, these sensors are assumed to have different data rates and error characteristics. 

The aircraft dynamics used for the development of the Kalman filter consists of the following differential 
equations: 
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In these equations, λ is the longitude, φ is the latitude and h is the altitude. The variable V denotes the airspeed, γ  
the flight path angle, χ is the heading angle and R is the radius of earth. Note that this model assumes that the 
aircraft flies at constant speed, constant heading and constant climb rates.  

The measurement model consists of:  
 

1. INS Latitude Measurement with bias 
2. INS Longitude Measurement with bias 
3. INS Altitude Measurement with bias 
4. INS Velocity Measurement 
5. INS Flight Path Angle Measurement 
6. INS Heading Angle Measurement 
7. GPS Latitude Measurement 
8. GPS Longitude Measurement 
9. GPS Altitude Measurement 
10. RADAR Latitude Measurement  
11. RADAR Longitude Measurement 

 
Assumed error characteristics of these measurements and their data rates are given in Table 1. 

 INS GPS RADAR 
Data Rate 1sec 2sec 20sec 
Latitude Bias 0.01rad   
Longitude Bias 0.01rad   
Altitude Bias 10ft   
Latitude Noise 1e-4rad 2e-4rad 1e-4rad 
Longitude Noise 1e-4rad 2e-4rad 1e-4rad 
Altitude Noise 3ft 3ft  
Velocity Noise 10ft/s   
Flight Path Angle Noise 1e-4rad   
Heading Angle Noise 1e-4rad   
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Table 1. Measurement Data Rates and Error Characteristics 
The data fusion algorithm is responsible for estimating the six states of the aircraft, together with biases in the INS 
provided latitude, longitude and altitude measurements. The sensor measurements are simulated by retrieving the 
aircraft state vector from FACET using CARAT# methods, and then adding pseudo-random noise generated in 
MATLAB. 

The state transition matrix Fdte=Φ is determined using the Jacobian F of the nonlinear system dynamics 
and the sample interval dt. At each sample, the Jacobian is calculated at the current estimates of the system states 
using the equations: 
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The last three rows in this equation correspond to the biases in INS latitude, longitude and altitude measurements.  
The state transition matrix is used to propagate the state covariance matrix P(.) as: 
 

dtkQkkPkkP ][][][][]1[ +ΦΦ=+  
 
Here, P(k) is the 9x9 covariance matrix and Q(k) is the 9x9 process noise matrix. The initial covariance matrix is 
chosen as the diagonal matrix:  
 

P(0) = diag([1e-2 1e-2 100 1 1e-4 1e-2 10 1e-4 1e-4 1e-4 1e-4 3]). 
 
The initial condition vector for propagating the model is chosen as follows: 
 

φ (0) = actual)0(φ  + 0.01rad,           λ (0) = actual)0(λ  + 0.01rad 

h(0) = h(0)actual + 500ft,   V& (0) = 0,  0)0( =γ& ,       0)0( =χ&  

V (0) = V(0)actual  +  10ft/s,    radactual 01.0)0()0( += γγ  

radactual 01.0)0()0( += χχ ,      bφ (0) = 0 (actual value 0.001rad) 

bλ (0) = 0,    bh (0) = 0 
 
The process noise matrix Q is also chosen to be a diagonal matrix with non-zero elements chosen for the velocity, 
flight-path angle and heading angle equations,  
 

Q = diag([0 0 0 0.0165 1e-5 1.5e-6 1e-2 1e-2 1e-2 0 0 0]). 
 
The state, covariance update equations and the gain computation for the Kalman filter are: 
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Here, h is 11x1 vector measurement model [ ]λφλφχγλφ hVh , H is the 11x9 Jacobian matrix of the 
measurement model, K is the Kalman gain and R is a 11x11 diagonal matrix consisting of measurement noise given 
in table 1. The entries of the H matrix can be computed for the INS, GPS, and RADAR measurements as:  
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It should be noted that although the overall measurement model consists of 11 measurements, their data rates are 
different. Consequently, the update equations would be different at each stage. At most sample instants, only a sub-
set of the measurement vector are available and the corresponding H matrix is picked as a sub-matrix of the overall 
H matrix. A propagation time of 1sec is used for the model, and every 1 sec an INS measurement is conducted, GPS 
measurement update every 2 sec and RADAR measurement update once in every 20sec. A block diagram for 
evaluating the Kalman filter data fusion algorithm is given in Figure 15.  
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Figure 15.  Kalman Filter Data Fusion Algorithm Evaluation 
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The state vector is sub-sampled to simulate INS, GPS and radar data streams. Each of the data sets are then 
corrupted using random noise. Both these steps are carried out in MATLAB. The Kalman filter data fusion 
algorithm is implemented as a MATLAB function. 

Figure 16 through Figure 20 show the performance of the data fusion algorithm in estimating the aircraft 
states and the INS measurement biases. The estimates of latitude and longitude start with large initial condition 
errors but very quickly settle down to their true values. It can be seen that not only does the estimator overcome 
initial condition errors but also asymptotically reaches the actual value rejecting the noise in the measurements. 
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Figure 16. Error in Latitude Estimation 

0 50 100 150 200 250 300 350 400

−0.02

0

0.02

0.04

0.06

0.08

Time(s)

Lo
ng

itu
de

 E
rr

or
 (

de
g)

Estimated
GPS

 

Figure 17. Error in Longitude Estimation 
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Figure 18. Error in Altitude Estimation 
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Figure 19. INS Latitude Bias Estimation 
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Figure 20. INS Longitude Bias Estimation 
 

The results presented in this section illustrate how the CARAT# software can be used to investigate 
advanced air traffic management concepts. In the present formulation, FACET was used only for generating 
measurement data. Note that instead of integrating the equations of motion, a copy of FACET could have been used 
to propagate the aircraft state vector. Such an approach may find future application in reducing the uncertainty 
estimates in aircraft departures and en route trajectories by fusing the data available in the NAS. Since the aircraft 
trajectory data forms the main input for strategic control of the airspace, such data fusion algorithms will be 
important in future ATM operations. Moreover, since these algorithms produce the state estimates, together with the 
uncertainty in the predictions, the effect of measurements errors in any strategic decisions can be immediately 
assessed.     

Implementing Conflict Detection and Resolution Algorithms in Java, Jython and MATLAB 

In order to illustrate the flexibility of the CARAT#, the Modified Potential Field method22 for conflict 
resolution provided in FACET has been re-coded in Java, Jython and MATLAB. A secondary objective of the work 
discussed in this section is to demonstrate that the CARAT# can be used extend the FACET functionality for 
formulating future research problems. 

The conflict detection and resolution algorithm is ported first to Java.  This is accomplished by a simple 
translation of the FACET module to a Java source file invoking the CARAT# API.  Minor changes are made to 
simplify the original code through decomposition and the addition of a few data structures.  After confirming that 
the new Java conflict resolution algorithm implementation gives identical results to the original FACET 
implementation, the algorithm is ported from the Java source to both the Jython and MATLAB scripting 
environments. 

The conflict simulation file consists of eight equidistant aircraft converging upon a single point over the 
Dallas-Fort Worth center.  The simulation is run asynchronously with an integration time-step of five seconds.  A 
close visual inspection revealed that in all four implementations, the eight aircraft exhibited identical behavior when 
resolving conflicts.  The FACET “Range Rings” visualization capability23 was used to confirm that all aircraft were 
able to successfully avoid coming within the required range of one another. A view of the conflict resolution process 
is given in Figure 21.  
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Figure 21. A View of the Conflict Resolution Process, with Aircraft involved in Potential 
Conflicts Colored Red 

Air Traffic Data Visualization Using CARAT#  

CARAT# enables access to FACET functionality from scripting environments such as MATLAB and Jython. 
Powerful graphics and graphing algorithms are available in both of these environments. For instance, MATLAB 
provides a set of high-level graphing functions. These can be used to display data as polar or rectangular line plots, 
bar and histogram graphs, contour plots, mesh and surface plots, and animations. The color and shading, axis 
labeling can all be controlled without requiring the user to manipulate low-level graphics routines.  

As an example of the use of MATLAB graphics capabilities for visualizing air traffic data, Figure 22 shows 
the traffic density at the air route traffic control centers in a 3-D bar graph form. The MATLAB script file for 
accessing data from FACET using the CARAT# API and to generate this graphic is only 133 lines long. This is a 
very compact code, considering the complexity of the graphic in Figure 22. The MATLAB file generates a movie of 
the traffic flows, indicating dynamic evolution of air traffic over the continental United States. Moreover, the 
viewpoint of this graphic can be dynamically changed during the FACET simulation.  

The usefulness of the CARAT# software for formulating interesting research problems based on the 
FACET engine is apparent from the foregoing sections. 
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Figure 22. Visualizing Air Traffic Density at Centers Using CARAT# and MATLAB 

IV. Conclusions 
This paper discussed the development of the CARAT# (Configurable Airspace Research and Analysis Tool 

– Scriptable) software for accessing the functionality of FACET software through the two different scripting 
environments.  The software provides an extensive set of modeling, simulation and analysis capabilities for studying 
the National Airspace System. The chief motivation for the present development was to provide simpler access to 
FACET functionality through interactive scripting languages popular within the research community. CARAT# can 
help the user formulate and analyze complex research problems with only modest programming skills.  

The use of the CARAT# software in air traffic management research was demonstrated through a few 
research problems. The first considered the aircraft trajectory optimization using genetic search methods and the 
second illustrated the use of CARAT# software for carrying out Monte Carlo simulation studies. The third example 
showed the development of a fuzzy logic controller for formation flying, and a fourth example illustrated the 
development of a data fusion concept for aircraft navigation using the Kalman filtering technique. The aircraft 
trajectory optimization and the fuzzy formation control problems illustrated the use of commercial toolboxes to 
expand the types of investigations that can be conducted using FACET along with the CARAT# software. The 
Monte Carlo simulation study and the data fusion problem exploit the robust numerical algorithms for random 
number generation and linear algebraic manipulations available in commercial software. The use of the CARAT# 
software in the Java and Jython environments were illustrated by re-coding one of the conflict resolution algorithms 
available in FACET and comparing their performance against the original C implementation. Finally, the 
exploitation of advanced graphics capabilities to visualize air traffic data from FACET using the CARAT# software 
was demonstrated. These research problems illustrate the versatility of the CARAT# software for conducting future 
research in the air traffic management area.  
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